
1 Appendix: Benefit of locality driven placement

We conduct the following experiment to study the benefit of locality driven placement on per-

formance. Normally, Rawcc assigns instructions to virtual tiles, then it assigns virtual tiles to

physical tiles by placing in close proximity virtual tiles that communicate a lot with each other.

In this experiment, we replace locality driven placement with a random one, and we measure its

effects on both execution time and route count, which is a count on the number of routes performed

on the static network. The change in execution time measures the end-to-end benefit of locality-

driven placement. The change in route count measures the increase in network traffic due to the

loss of locality. Benchmark Slowdown Change in ILP Routes
Route Count /Cycle

Sha 51% 89% 2.4 2.2
Aes 12% 68% 3.8 1.3
Fpppp-kernel 10% 52% 7.6 5.2
Adpcm 22% 75% 0.9 1.3
Unstructured 11% 187% 1.7 0.2
Cholesky 5% 9% 9.1 2.1
Vpenta 0% 0% 81.4 0.7
Mxm 0% -23% 11.9 1.8
Swim 0% 79% 24.3 2.7
Jacobi 17% 122% 62.1 9.0
Life 54% 151% 48.7 13.9

Table 3. Impact of locality on performance.

Table 3 presents the results of this experiment

on 64 tiles. To help understand the results, the ta-

ble includes the following data for the 64-tile base

case: the level of exploited ILP, defined to be the

speedup of the application on 64 tiles over a single

tile; and the average route count per cycle.

For about one third of the applications, their performance is not adversely effected by random-

ized placement. These applications all have high ILP and low route count per cycle. Interestingly,

an application may be sensitive to the method of placement either because it has low ILP, or because

it has high route count per cycle. Applications with low ILP (Sha, Aes, Fpppp-kernel, Adpcm, Un-

structured) only profitably uses a subset of those tiles. Randomizing tile placement thus destroys

much of the application locality and leads to significant slowdown and higher network utilization.

On the other hand, having a high route count indicates that an application communication a lot.

Unless each tile communicates with every other tile with the same frequency, the application would

benefit from locality driven placement.

The results demonstrate that fast access to a few tiles is preferable to uniformly medium-speed

access to all the tiles. Thus, a mesh SON is likely to have better performance than a crossbar SON.

38



2 Appendix: Operand Analyses

To better understand the flow of operands inside an SON, we analyse the operand traffic at

receiver nodes.

Analysis of Operand Origins Figure 16a analyses the origin of operands used by the receiver

nodes. Fresh operands are computed locally, making use of 0-cycle local bypassing or the local

register file; remote operands arrive over the inter-tile SON; and reload operands originate from a

previous spill to the local data cache. The figure presents these results for each benchmark from

two to 64 tiles. An operand is counted only once per generating event (calculation by a functional

unit, arrival via transport network, or reload from cache) regardless of how many times it is used.

Although these numbers are generated using Raw’s SSS SON, the numbers should be identical for

an SDS SON with the same 5-tuple. Not surprisingly, remote operands are least frequent in dense

matrix benchmarks, followed by sparse matrix benchmarks, followed by the irregular benchmarks.

(a) Operand origins

Fresh Reload Remote

02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32

sha aes fpppp adpcm unstruct moldyn btrix cholesky vpenta mxm tomcatv swim jacobi life

0%

20%

40%

60%

80%

100%

(b) Remote operand usage pattern

Hot−use One−use IO

One−use OOO

Multi−use IO

Multi−use OOO

02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32 02 08 32

sha aes fpppp adpcm unstruct moldyn btrix cholesky vpenta mxm tomcatv swim jacobi life

0%

20%

40%

60%

80%

100%

Figure 16. a) Analysis of operand origins. b) Analysis of remote operand usage pattern. For each
benchmark there are six columns, one for each power of two configuration from two to 64.

Analysis of Remote Operand Usage Pattern We further analyze the remote operands from

Figure 16a by their usage pattern. The data measures the ability of the compiler to schedule

39



sender and receiver instruction sequences so as to allow values to be delivered just-in-time. Such

scheduling impacts the optimal size of the IRF in the case of the SDS SON. In the case of the

SSS SON, it reflects the importance of a facility to time-delay or re-cast operands, as mentioned in

Section 6. This facility spares the compute processor from having to insert move instructions (in

effect, a hidden receive occupancy) in order to preserve operands that arrive earlier than needed.

We classify the remote operands at the receiver node as follows. Hot-uses are directly con-

sumed off the network and incur no occupancy. One-uses and Multi-uses are first moved into the

register file and then used – One-uses are subsequently used only once, while Multi-uses are used

multiple times. We also keep track of whether the operand arrives in the same order in which a

tile uses them. An SON operand is in-order (IO) if all its uses precede the arrival of the next SON

operand; otherwise it is out-of-order (OOO).

Figure 16b shows the relative percentages of each operand class.13 By far the most significant

use-type are Hot-Use operands, followed by One-use OOO operands. We can compute the effective

receive occupancy by summing the fraction of operands that are not Hot-Uses. This value varies

greatly between the benchmarks, ranging from around 0 (100% Hot-uses) to 0.8 (20% Hot-uses).

On 64 tiles, the average occupancy over all the benchmarks is 0.44. Recall that although this

occupancy is less than one, Figure 10 shows that even a single cycle of occupancy can have a large

effect on performance.

We intend to extend the Raw compiler so that it utilizes the static routers’ existing register

files and reduce this occupancy to nearly zero. These register files can be used to time-delay

OOO operands, and to re-cast multi-use operands into the compute processor. Future work will

determine the optimality of this structure.

13Due to how the compiler handles predicated code, a few of the benchmarks have SON operands that are not
consumed at all, which explains why a few of the frequency bars sum up to less than 100%.

40


