Conservation Cores:

Reducing the Energy of
Mature Computations

Ganesh Venkatesh, Jack Sampson, Nathan Goulding,
Saturnino Garcia, Vladyslav Bryksin, Jose Lugo-Martinez,

Steven Swanson, Michael Bedford Taylor

Department of Computer Science and Engineering,
University of California, San Diego

The Utilization Wall

Scaling theory Classical scaling
— Transistor and power budgets no Device count S?
longer balanced Device frequency S
— Exponentially increasing Device power (cap) | 1/S
problem! Device power (V) | 1/S?
Experimental results Utilization 1

— Replicated small datapath

— More ‘Dark Silicon’ than active Leakage limited scaling

Device count S?
Observations in the wild Device frequency | S
— Flat frequency curve Device power (cap) | 1/S
— “Turbo Mode” Device power (V,,) | ~1
— Increasing cache/processor ratio Utilization 1/8?

The Utilization Wall

® Scaling theory

— Transistor and power budgets no
longer balanced

— Exponentially increasing
problem!

= Experimental results
— Replicated small datapath
— More ‘Dark Silicon’ than active

= Observations in the wild
— Flat frequency curve

— “Turbo Mode”
— Increasing cache/processor ratio

1.0
09
0.8
0.7
0.6
0.5
04
0.3
02
0.1
0.0

Expected utilization for fixed area
and power budget

\

\ZX
\

The Utilization Wall

® Scaling theory

— Transistor and power budgets no
longer balanced

— Exponentially increasing
problem!

= Experimental results
— Replicated small datapath
— More ‘Dark Silicon’ than active

= Observations in the wild
— Flat frequency curve

— “Turbo Mode”
— Increasing cache/processor ratio

0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

Utilization @ 300mm & 80w

90nm 45nm 32nm
TSMC TSMC ITRS

The Utilization Wall

® Scaling theory

— Transistor and power budgets no
longer balanced

— Exponentially increasing
problem!

= Experimental results
— Replicated small datapath
— More ‘Dark Silicon’ than active

= Observations in the wild
— Flat frequency curve
— “Turbo Mode”
— Increasing cache/processor ratio

0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

Utilization @ 300mm & 80w

90nm 45nm 32nm
TSMC TSMC ITRS

The Utilization Wall

Scaling theory Utilization @ 300mm* & 80w
— Transistor and power budgets no 0.20
longer balanced 0.1 | 17-6%
— Exponentially increasing 0.16 A
problem! 0.14 A
: 0.12 .
Experimental results 3x
. 0.10
— Replicated small datapath 008
— More ‘Dark Silicon’ than active 0.06 6.5% 2x
3.3%
Observations in the wild 0-04
0.02
— Flat frequency curve
0.00 . |
— “Turbo Mode” 90 45 22
. . nm nm nm
— Increasing cache/processor ratio TSMC TSMC ITRS

We’re already here

Utilization Wall:

Dark Implications for Multicore

Spectrum of tradeoffs
between # cores and
frequency.

e.g.; take
65 nm—>32 nm;
e (s =2)

4 cores (@ 3 GHz

65 nm 32 nm

2x4 cores @ 3 GHz
(8 cores dark)
(Industrys Choice)

4 cores (@ 2x3 GHz
(12 cores dark)

What do we do with Dark

Silicon?
Insights:

— Power is now more expensive than area

— Specialized logic has been shown as an effective
way to improve energy efficiency (10-1000x)

Our Approach:

— Fill dark silicon with specialized cores to save
energy on common apps

— Power savings can be applied to other program,
increasing throughput

C-cores provide an architectural way to trade
area for an effective increase in power
budget!

Dark Silicon

l

Conservation Cores

m Specialized cores for reducing
energy

— Automatically generated from hot
regions of program source

— Patching support future proofs HW

® Fully automated toolchain
— Drop-in replacements for code

— Hot code implemented by C-Core,
cold code runs on host CPU

— HW generation/SW integration

= Energy efficient
— Up to 16x for targeted hot code

Hot code
\

)

D cache <—

1

\
.

Host I cache

CPU
(general purpose)

—\

Cold code

The C-Core life cycle

Stable A—————— e T
Applications 4 g 12 1.21f 1.22 1.3 > Versions
’/ K / | I Released
v , \ 1 .
— 2.96 3.4 3.5 4 ‘\ 4.2 “ 4.21™ Over Time
’ | |
- N L
Patching-Aware Compiler (e)
R T
\\ R v v
o~ fire=e
L I]
2 2 2 2 Many-core
O (L1 oL UL O L
- - s——a——nm Processor
5ol Bl 2 3l 2 1| with C-cores
Patchable " .
C-core (b) (c) AmiEEIEGIEE
B -} |
Specifications Conservation Cores (d)

10

Outline
The Utilization Wall
Conservation Core Architecture & Synthesis
Patchable Hardware
Results

Conclusions

11

Constructing a C-Core

C-Cores start with source code

— Parallelism agnostic sumArray(int n, int *a)

{
Int i =0;
C code supported int sum = 0:
— Arbitrary memory access patterns for(; i<n; i++)
{
— Complex control flow sum += a[if;
Y
— Same cache memory model as
processor return(sum);
Y

— Function call interface

Constructing a C-Core

Compilation Scan Chain » Data Path

Interface

— (C-Core 1solation

— SSA, infinite register, 3-address ** ="
— Direct mapping from CFG, DFG

— Scan chain insertion

Verilog to Place & Route
— TSMC 45nm libraries
— Synopsys CAD flow
 Synthesis
* Placement
* Clock Tree Generation
* Routing

C-Core for sumArray

Post-route
Std. Cell
layout of an
actual C-Core
generated by

Green — Data path
our toolchain

0.01 mm?, 1.4 GHz 14

A C-Core enhanced system

Tiled multiprocessor environment

— Homogeneous interfaces, heterogeneous resources

Several C-Cores per tile

— Different types of C-cores on different tiles

Each C-Core interfaces with 8-stage MIPS core

— Scan chains, cache as interfaces

CPU 1
CPU {1
CPU |

T] i
=) P P T
Slurl | Sl [S(u] | S| kil g

! .u 'y —- I-Cache D-Cache

N :

2ol 25l 2 |2 +
St ||t S]l O ler]]] o i)

< ~H- ~Hi< - —

= P
2 2 2 i || 2 3 = /
Gl (|| o|L|]] O f1]]] o |Lt §§9m<_/
= 3

C
N

' L CPU
[} N - >
[T]I'_E } [L [N EPU
2 it L '
L1 L1 L1 L

§i C-core
—

Data Path
Operations

L]

stValid==0

H

4_.-,\

Cache
Interface

Outline

m The Utilization Wall

m Conservation Core Architecture & Synthesis
w Patchable Hardware

m Results

m Conclusions

16

Patchable Hardware

Future versions of hot
code regions may have
changes

— Need to keep HW usable

— C-Cores unaffected by
changes to cold regions

on Patch

General exception

f1to c-core

Software’
Region

mechanism :

FEtUIN NS e e e e e e e e eecceccafeceaacaaaaaaans

— Trap to SW @:fé-& ----------------)
@

— Can support any changes 2 5 retum sum :

pb Y = = _to CPU :

lI o l

——————————————————— 17

Reducing the cost of change

Examined versions of
applications as they
evolved

— Many changes are
straightforward to support

Simple lightweight
configurability
— Preserve structure

— Support only those
changes commonly seen

Structure Replaced by
adder
subtractor AddSub
comparator(GE) Compare6
bitwise AND, OR, BitwiseALU

XOR

constant value

32-bit register

18

Patchability overheads

Area overhead

— Split between generalized
datapath elements and constant
registers

Power overhead

— 10-15% for generalized datapath
elements

Opportunity costs
— Reduced partial evaluation

— Can be large for multipliers,
shifters

Area Area
Structure (um?) Replaced by (um?)
adder 270
subtractor 270 Addub 363
comparator (GE) 133 Compare6 216
bitwise AND, OR 34 Bitwise 191
bitwise XOR 56]

constant value ~ 0 32-bit register 160

19

Patchability payoff Longevity

Graceful degradation

— Lower 1nitial efficiency

— Much longer useful lifetime

Increased viability

— With patching, utility lasts ~10
years for 4 out of 5 applications

— Decreases risks of specialization

Energy efficiency of HW normalized to SW

28

24

1

204 M

16

12

8 =

4 -

0

32

28

24

20

16

12

8

4

0

Non-patchable HW

1991

-9

.

O—Mﬂ
|
|
|
-6 'l
l‘ ‘ l
. I
|
00000000
|
|
|
|
| [
S5O0 000000000
0000099000 0000
1884 1887 2000 2003 2006 2008
Year
Patchable HW

'O OOOOOOOOOOOOOOO

1891

1994 1°°7 2'»'»0 2%3 20’\6 20’%0
Year

Outline

m The Utilization Wall

m Conservation Core Architecture & Synthesis
m Patchable Hardware

m Results

m Conclusions

21

Automated measurement

methodology

C-Core toolchain

l

— Specification generator

Hotspot analyzer

— Verilog generator Cold code / \ Hot Code
Synopsys CAD flow . C-Core

— Design Compiler Rewriter specification

— IC Compiler oenerator

— TSMC 45nm ! Verilog
Simulation gce generator

— Validated cycle-accurate C-Core ,

modules q
. . , , ynopsys flow

— Post-route netlist simulation Simulation
Power measurement : :

— VCS+PrimeTime Power

measurement

22

Our cadre of C-Cores

We built 23 C-Cores for

assorted versions of 5
applications

— Both patchable and non-
patchable versions of each

— Varied 1n size from 0.015
to 0.326 mm?

— Frequencies from 0.9 to
1.9GHz

. Area (mm?) Freq. (MHz)
C-core Non-P. Patch. | Non-P. Patch.
bzip2
fallbackSort 0.128 | 0.275 1345 1161
fallbackSort 0.128 | 0.275 1345 1161
cjpeg
extract-MCUs 0.108 | 0.205 1556 916
getrgb_ycc_rows | 0.020 | 0.044 1808 1039
subsample 0.023 | 0.039 1651 1568
extract_-MCUs 0.108 | 0.205 1556 916
get_rgb_ycc_rows 0.020 0.044 1808 1039
subsample 0.023 | 0.039 1651 1568
djpeg
jpeg-idct_islow 0.133 | 0.222 1336 932
yccrgb_convert 0.023 | 0.043 1663 1539
jpeg-idct_islow 0.135 | 0.222 1390 932
ycc.rgb_convert 0.024 | 0.043 1676 1539
mcf
primal_bea-mpp 0.033 | 0.077 1628 1412
refresh_potential 0.017 0.033 1899 1647
primal_bea_mpp 0:032=4 0.077 1568 1412
refresh_potential 0.015 | 0.028 1871 1639
Vpr
try_swap 0.181 0.326 1199 912
try_swap 0.181 770326 1199 779127

C-Core hot-code energy
efficiency

-
(o))
|

@ Software
@ C-Core
B C-Core (code changed)

—
=N

N
N

N
o

Per-function efficiency (work/J)

o N M O O

[[HE Nl T—I V—I [[[[L

djpeg djpeg mcf mcf vpr Vvpr cjpeg cjpeg bzip2 Avg.
A B A B A B A B A-F

Up to 16x as efficient as general purpose in-order core, 9.5x on average
24

System energy efficiency

C-Cores very efficient for targeted hot code

Amdahl’s Law limits total system efficiency

25

C-Core system efficiency with
current toolchain

@ Software @ Patchable

% o
£ 0.9 -
g 0.8 -
= 0.7 -
2 0.6 -
& 0.5 -
©
T 0.4 -
N 0.3
©
£ 0.2 -
<23 0.1 -
O I I I I I I I I I I
djpeg djpeg mcf mcf vpr vpr cjpeg cjpeg bzip2 Avg.
A B A B A B A B A-F
= Base

— Avg 33% EDP improvement

26

Tuning system efficiency

Improving our toolchain’s

......
-
-
"

-

......

coverage of hot code regions

— Good news: Small numbers of

1)
C
0
0
2
B
static instructions account for _—3 % Coverage at
. 0 # static insts
most of execution = 2500 | 5000 | 10000
0
B 99.6(99.9 | 99.9 astar
. 0 99.4(99.9 | 99.9 hmmer =
System rebalancing for cold- 2 99.4199.8 | 99.9 djpeg =
. @ 99.1099.8 | 99.9 cjpeg
code execution € :?3 322 Zg; gzzg o
2 71 96. .
88.9]97.7 | 9.7 mef -----
— Improve performance/leakage % 03 16|05 | %0 gop ——]
trade-offs for host core . 85.0|96.5 | 99.6 vpr -~
o 02¢ 84.195.8 | 99.1 bzip2 e
c 75.6|86.9 | 94.5 perl
2 o | 65.5|75.8 | 83.6 evince —
8 ' 65.0]75.9 | 86.3 emacs ====-
L

0 |]] | | | | | |

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Static instructions

C-Core system efficiency with
toolchain improvements

1 - [Software [Patchable B +coverage [1+lowleak

0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -

0 -

Normalized application EDP

djpeg djpeg mcf mcf vpr vpr cjpeg cjpeg bzip2 Avg.
A B A B A B A B A-F
" Withcompngy ed @e Vediage system components
= AXBO3 3o LRSI rovement

— Avg 14% increased execution time

28

Conclusions

The Utilization Wall will change how we build hardware
— Hardware specialization increasingly promising

Conservation Cores are a promising way to attack the
Utilization Wall

— Automatically generated patchable hardware

— For hot code regions: 3.4 — 16x energy efficiency

— With tuning: 61% application EDP savings across system
— 45nm tiled C-Core prototype under development (@ UCSD

Patchability allows C-Cores to last for ten years
— Lasts the expected lifetime of a typical chip 29

30

