
Ruche Networks: Wire-Maximal, No-Fuss NoCs
(Special Session Paper)

Dai Cheol Jung, Scott Davidson, Chun Zhao, Dustin Richmond and Michael Bedford Taylor
Bespoke Silicon Group

University of Washington

Abstract—Network-On-Chip design has been an active area
of academic research for two decades, but many proposed ideas
have not been adopted in real chips because they have complex
behavior or create significant risks in chip implementation. For
this reason, many existing chips just employ fast, replicated
vanilla dimension-ordered mesh NoCs. However, these networks
do not come close to utilizing the full available VLSI wiring
capabilities, and propagate packets at speeds that are significantly
below the raw speed of wires.

The ideal network would not require any custom circuits, and
would decompose easily into a hierarchical CAD flow consisting
of a top-level design instantiating a mesh of identical hardened
tiles with short-wire neighbor connections.

At the same time, this ideal network would easily scale
to efficiently utilize the majority of the available chip wiring
resources, and would offer a mechanism for scaling this wire
usage up or down based on available bandwidth. Packets would
spend a significant fraction of their time in wire delay rather than
router delay. Finally, the NoC would be simple to understand.

This paper proposes Ruche Networks, which fulfill these
requirements. They are based on simple 2-D mesh networks but
amplify the NoC bandwidth and reduce NoC diameter of tiled
architectures by adding long-range physical channels from each
tile to other tiles on the same row or column. The more distant
the connections, the greater the bandwidth of the network and
the lower the diameter. The distance is typically increased until
all of the physical VLSI wiring bandwidth have been absorbed.

We explain the rational for this “ruching” and provide a simple
methodology for designing and implementing these networks
using a standard cell VLSI CAD flow.

In this paper, we show the steps involved in ruching the
HammerBlade Manycore’s mesh networks; these steps can easily
apply to other designs.

I. INTRODUCTION

Network-On-Chip design has been an active area of aca-
demic research for two decades, but many of the proposed
ideas have not been adopted in real chips because they have
complex behavior or create significant risks in chip imple-
mentation. For this reason, many existing chips [1], [2], [3],
[4], [5], [6] just employ a few simple dimension-ordered mesh
NoCs without virtual channels.

The ideal network would not require any custom circuits,
and would decompose easily into a hierarchical CAD flow

1This material is based on research sponsored by Air Force Research Lab-
oratory (AFRL) and Defense Advanced Research Projects Agency (DARPA)
under agreement numbers FA8650-18-2-7856 and FA8650-18-2-7852. The
views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of Air Force Research Laboratory (AFRL) and
Defense Advanced Research Projects Agency (DARPA) or the U.S. Govern-
ment. This work was partially supported by NSF SaTC Award 1563767, NSF
SaTC Award 1565446, and by the DARPA/SRC JUMP ADA Center.

Fig. 1: A Ruche Network augments a 2-D mesh with
additional parallel high-bandwidth links called Ruche
Channels. NoC bandwidth can be scaled to VLSI wiring limits
by increasing the hop distance of the links, but node router
logic area has constant area, a small increase over a standard
mesh. This example employs a X Ruche Factor of 3 and Y
Ruche Factor of 2.

consisting of a top-level instantiating a mesh of identical tiles
with short wires that connect only neighbor tiles. Each tile
would have identical timing to its neighbors.

At the same time, this ideal network would easily scale
to efficiently utilize the majority of the available chip wiring
resources, and would offer a mechanism for scaling this wire
usage up or down based on available bandwidth. Finally, it
would be easy to model in terms of performance.

This paper proposes Ruche Networks, which fulfill these
requirements. They are based on simple 2-D mesh networks
but amplify the NoC bandwidth and reduce NoC diameter
of tiled architectures by adding long-range physical channels
from each tile to other tiles on the same row or column. The
more distant the connections, the greater the bandwidth of the
network and the lower the diameter. The distance is typically
increased until all of the physical VLSI wiring bandwidth have
been absorbed.

In this paper, we explain the rational for this ruching and
provide a simple methodology for designing and implementing
these networks all the way down to VLSI using a standard cell
CAD flow. As a running example, we show the steps involved
in ruching the HammerBlade Manycore’s mesh networks in
GlobalFoundries 12nm; these steps can easily apply to other
designs.978-1-4673-9030-9/20/$31.00 c©2020 IEEE

16

32

Memory
Tile

Compute
Tile

Fig. 2: Running Example for the Paper: A HammerBlade
Manycore Pod. A HammerBlade Chip is comprised of many
pods, one of which is pictured here. The tiles are arranged in
a mesh network. In the center are 512 compute tiles, and at
the top and bottom are 64 cache tiles, which interface to the
off-chip memory system.

The rest of the paper proceeds as follows. First, in Section II,
we briefly describe the baseline HammerBlade Manycore
architecture, and the design methodology that is employed.
We describe architectural trade-offs in Ruche networks in
Section III, and evaluated them in Section IV. We present a
methodology for implementing Ruche networks in V. Finally,
we conclude.

II. BASELINE ARCHITECTURE

As a running example in this paper, we will examine
the application of Ruching to a baseline manycore design,
HammerBlade Manycore, which was taped out in 12nm Glob-
alFoundries technology in July 2019 and has been up and
running in the lab. HammerBlade is descended from the 1.4
GHz 511-core Celerity [4], [3], which broke several world
records, including RISC-V performance and fastest CoreMark
performance, but has superior programmability and memory
system features. HammerBlade is an agile open source hard-
ware project (https://github.com/bespoke-silicon-group/bsg
manycore) and is continuously evolving—be sure to always
find the latest version!
Architecture. The current architecture of a single Ham-
merBlade Pod is shown in Figure 2, which is a 16x32 array of
RISC-V compute engine tiles, bounded by memory tiles which
contain 32 KB of cache. The tiles are interconnected by a
pair of dimension-ordered (X-then-Y) routed 2D mesh single-
cycle-per-hop, single-flit-packet networks with two-element
input FIFOs and local ready/valid flow control: one 93-bit
request network and one 51-bit reply network. Thus, there
are 144 wires on a side. Approximately 36 compute tiles fit
in a single mm2 of silicon, and each tile can attain 4 Gflops
of performance at 2 GHz.

A HammerBlade Pod easily scales up and down from 16x8
to 64x32, or 128x64. Every tile has a ∼4KB local data
scratchpad and ∼4KB I-Cache. All addresses in the caches
and scratch pads are mapped into a partial global address

space (PGAS), which means that any tile can access any
memory address using a standard load or store instruction.
If the address is not mapped locally, the compute tile will
launch a non-blocking request packet into the network, and
continue on to the next instruction; asynchronously receiving
the reply packet which contains either load data or store
acknowledgment.
Physical Design Methodology. The physical implementation
of a design imposes additional constraints that can make it
difficult to achieve the expected performance of the system
if the physical design is not taken into consideration. The
HammerBlade Pod architecture achieves scalability by being
a friendly design to realize in silicon.

A HammerBlade Pod is composed of many identical tiles
in the array which allows us to take advantage of a bottom-
up hierarchical design methodology. The tile will first be fully
implemented as a sub-block of the design. At the top level (the
full HammerBlade Pod), multiple instances of this tile sub-
block will be stamped out in a 2D array and stitched together.
During the top level implementation, all internal paths inside
the sub-blocks can be ignored and only interfacing logic needs
to be considered for timing purposes, greatly reducing the
memory overhead and runtime of the EDA tools.

Even still, a HammerBlade Pod with 128 tiles takes over
36 hours on a 72-core Xeon Gold SP machine to go from
SystemVerilog RTL through logic synthesis, automatic place
and route (APR), and static timing analysis, when it is working
well. When it is not working well, it will run indefinitely and
never finish. Such large time-to-results reduces the number
of design iterations designers can work though to fix and
optimize the design, and presents a very strong danger for
complex physical designs that problems will not be solved
quickly enough to meet tapeout deadlines. Iterations on a sub-
block are much quicker (just a few hours) and a sub-block
may be instantiated thousands of times; therefore a majority
of the design complexity is pushed inside of a sub-block. This
gives designers more opportunity to find and implement opti-
mizations that get replicated, amortizing optimization effort.

Because sub-blocks instances must have identical internals,
the timing requirements for that block must union all of the
timing constraints that are imposed by the many environments
it is placed in. If one instance has a particularly slow input
signal that for another instance, is overly fast, then the APR
tool must assume that the input is both slow and fast. This
creates a nightmare as the tool tries to make potentially
impossible concessions for both timing environments even
though no actual instance actually needs to meet that spec.

Taken in this light, a major benefit to a 2D mesh network,
with its regular, local wiring, over many other network topolo-
gies with irregular wiring is that the timing environment can be
made identical between sub-blocks at the top level, eliminating
this major source of risk in implementation.

For NoCs, another important physical constraint is the num-
ber of wires we can route. Because all of the complexity has
been pushed inside the block, the top level routing primarily
consists of connections between blocks. The HammerBlade

https://github.com/bespoke-silicon-group/bsg_manycore
https://github.com/bespoke-silicon-group/bsg_manycore

Fig. 3: The Half Ruche Network only applies Ruche
Channels in one direction, and works particularly well
with the combination of dimension-ordered routers and
networks with aspect ratio 2:1 like HammerBlade. This
example has X Ruche Factor of 3. Each node is connected
both to its nearest neighbors, and the nodes three hops to the
East and to the West.

Pod tiles have ports on 4 metal layers: 2 vertical layers and
2 horizontal layers. Between tile sub-blocks only 13% of the
available wires are actually used to connect the tiles together.
Based on prior experience, 50% wire utilization is a reasonable
upper bound as we want to leave every other wire track empty
to eliminate noise and signal slowdowns due to capacitve
coupling which is particularly bad in long parallel wires that
are common in NoCs.
Network Limits. Mesh networks offer great bandwidth when
communication has locality; for example, a HammerBlade tile
has 4 dedicated links to neighbors but can only inject one
memory request per cycle; so there is 4:1 over-resourcing
for nearest neighbor communication patterns. Conversely if
loads/stores on average travel more than 4 hops, and are
sent every cycle, then there is under-resourcing. For codes
that share memory across local tiles’ memories, software can
sometimes organize tiles into tile groups, which collectively
work on the groups’ scratch pads, which creates pockets of
locality, reducing contention.

The 2:1 aspect ratio of the HammerBlade Pod is driven by
the desire to increase the number of caches on the edge, and
with some optimism about the ability to map data structures to
caches in a way that improves locality in the mesh. However,
as it turns out, ease-of-programming concerns often spread
addresses randomly over the caches. Since the caches can ser-
vice 64 requests per cycle collectively, the bisection bandwidth
of 16 requests per cycle means that for random accesses, the
system is limited to about half of its peak potential by the
section. At the same time, although the achieved single-cycle
per hop is fast for the literature, worst case round-trip hop
count on an unloaded network is (15+31)×2 = 92 hops, which
is a significant on-chip latency.

Thus, there is desire to use HammerBlade’s many unused

South
Proc

Proc

West East

North

South

Ruche
East

Ruche
West

North

Fig. 4: Half Ruche Network Router Datapath. Highlighted
logic and thicker wires indicate additional components added
to the standard 2D mesh interconnect router in order to support
the Ruche Channels. A variant of the Half Ruche Network
router design can be constructed by depopulating some of the
crossbars as indicated with gray dot connections for the north,
south, and proc crossbar multiplexers.

wiring tracks to improve both the latency and the bandwidth
of the network, while consuming almost no logic area so as
not to reduce the number of tiles on the chip. This led us to
conceive of Ruche Networks.

III. RUCHED MESH NETWORK

A Ruche Network augments a 2D nearest-neighbor con-
nected mesh network (which we refer to as the Local Network)
with additional physical Ruche Channels to both increase
bandwidth and decrease diameter. A Half Ruche Network only
has Ruche Channels along one dimension (i.e., either X or
Y) and a Full Ruche Network has them in both dimensions.
In those dimensions, a node will have one Ruche Channel
connected to another node in the positive direction and one
in the negative direction. An example Half Ruche Network
is shown in Figure 3 and an example Full Ruche Network is
shown in Figure 1.

We employ the term Ruche Factor to describe how far
the Ruche Channels span. So for example, a Ruche Network
with Ruche Factor zero is just a mesh with single links to
nearest neighbors; with Ruche Factor one has dual links to
nearest neighbors; and with Ruche Factor two has one link to
neighbors and another link to the neighbors’ neighbor.

The larger the Ruche Factor, the greater amount of VLSI
wiring bandwidth that a design can absorb, and the faster data
can travel across the chip, skipping tiles each cycle.

A Ruche Network has only a small increase in tile router
size over a standard mesh. This area remains constant even as
NoC throughput is increased and NoC diameter is decreased
by increasing Ruche Factor. Moreover, Depopulated Crossbar
Ruche Networks, which restrict routing directions within a
Ruche Network, can further reduce this constant area increase
to almost nothing.

5 10
Ruche Factor

0

200

400

600

800

1000
Su

m
 o

f F
lit

 L
at

en
cie

s
Machine Width 16

Ruche (depopulated)
Ruche (full)
Express Cubes

5 10 15
Ruche Factor

0

1000

2000

3000

4000

5000

6000

7000

Su
m

 o
f F

lit
 L

at
en

cie
s

Machine Width 32
Ruche (depopulated)
Ruche (full)
Express Cubes

5 10 15 20
Ruche Factor

0

10000

20000

30000

40000

Su
m

 o
f F

lit
 L

at
en

cie
s

Machine Width 64
Ruche (depopulated)
Ruche (full)
Express Cubes

5 10 15 20 25
Ruche Factor

0

50000

100000

150000

200000

250000

300000

350000

Su
m

 o
f F

lit
 L

at
en

cie
s

Machine Width 128
Ruche (depopulated)
Ruche (full)
Express Cubes

Fig. 5: Modest Ruche Factors have the best average unloaded latency, but larger ones make more sense with larger
machines, and Ruche Networks are generally better than single-level Express Cubes. The total number of message hops
required to perform an all-to-all unidirectional communication for a machine with the given width decreases sharply with only
a few hops added to the network; however the benefits start to diminish quickly until eventually additional hops increase the
total number of hops.

Ruche Channels are a novel technique jointly proposed
by our team and by Chris Batten’s team at Cornell [7]. In
contrast to Express Cubes [8], Ruche Channels do not add
additional interposing interchanges between nodes and are
better suited for standard-cell based on-chip networks. Unlike
Express Virtual Channels [9], Ruche Channels are not a virtual
topology imposed on a single physical channel; they are
additional physical channels providing additional bandwidth.
Unlike MECS [10], they employ identical replicated tiles, scale
to large numbers of tiles without tile size increase, and can
be implemented easily in standard cell VLSI flows. Moreover,
Ruche Channels result in only a constant increase in tile logic
gate area despite the addition of many additional physical
channels.

Ruche Networks can be used to implement a static form of
NoC Symbiosis [11] (i.e. coplacement of the network routers
with core logic so that the network can leverage unused
routing resources) to attain high utilization of VLSI wiring
resources, since most of the links passing through a tile do not
require routers. However, in this paper, we employ full APR-
based NoC Symbiosis to enable structured wire interleaving to
improve signal integrity, reduce noise, and decrease delay.

What we did to HammerBlade. Since the HammerBlade
Pod is rectangular with a 2:1 X:Y aspect ratio, we found
that a single-cycle-per-hop Depopulated Crossbar Half Ruche
Networks with X Ruche Factor 3 worked extremely well,
delivering up to 4× throughput increase and 3× diameter
reduction in the most constrained portion of the mesh, while
minimizing growth of crossbar area. Since HammerBlade does
X-first dimension-ordered routing for request flits, the Half
Ruche Networks can be thought to first “punch through” the
bisection bottleneck of the original mesh before routing on
the more numerous, standard mesh Y channels. Moreover this
approach minimizes area increase since Ruche Network router
resources scale most favorably in the “first leg” of dimension
ordered routing. Reply packets are routed Y-first to retrace the
path back to the source, so for the reply network we also X

Half Ruche, and experience greater crossbar growth, but the
reply network is about 1/3 the width.
Ruche Router Deep Dive. As shown in Figure 4, the router
used to implement the Ruche Network is the same design
as an optimized dimension-ordered mesh router, but with 2
additional full-duplex ports labeled (without loss of generality,
assuming X-first routing) Ruche East (RE) and Ruche West
(RW) for a Half Ruche Network and additional Ruche North
and Ruche South ports for a Full Ruche Network. Flits are
still routed using a XY-dimension ordered routing algorithm;
however if the distance to the destination in a dimension is
greater than or equal to the Ruche Factor, then the RE or RW
ports are employed rather than the local E and W ports. Said
another way, the router will favor the Ruche Network unless it
would overshoot the X coordinate of the destination, in which
case it will use the local network.

The addition of the two full-duplex Ruche ports RE and RW
add a small amount of logic to the routers. To drive the RE
and RW output ports, each will need a 2-input crossbar (with
P and RW inputs, and with P and RE inputs respectively).
In addition to the two new crossbars, in a Fully Populated
Crossbar Ruche Network, the N, S and P output ports will
each need 2 additional input ports for their crossbars. Finally,
the E port will need an additional input for the RW port and
the W port will need an additional input for the RE port.
Routing Optimizations.. To reduce the router area impact
even more, the Depopulated Crossbar Ruche Network, also
shown in the figure, employs a modified router that eliminates
the ability to turn out of a Ruche Channel; e.g. packets must
hop off of the Ruche Channel on to the local network before
changing dimensions (i.e. to Y or P port). Then the N, S and
P crossbars are depopulated to prevent the area overhead of
adding the two Ruche ports. Thus the Ruche Network cannot
be taken to the exact X destination, but must hop off the
express links earlier and take the local network to the final
X destination.

Intriguingly, depopulated variants can have superior band-

width characteristics to fully populated ones, because it better
load balances traffic. In the results section, we will evaluate
the performance trade off between these two router designs.

Tuning routing algorithms on Ruche Networks is an intrigu-
ing area of research. For example, with Ruche Factor of one,
the Ruche routing algorithm will always choose to use the
Ruche Channels to route flits. This leads to an under-utilization
of the local network negating the additional bandwidth ex-
pected from adding the Ruche Network. To combat this, we
have the Ruche Network route traffic on the local network for
routes with odd hop distances.

IV. EVALUATION

To evaluate the Ruche Network, we created a cycle accurate
model to calculate the performance characteristics of Half
Ruche Networks. For each experiment, we simulated the
network characteristics for an all-to-all unidirectional com-
munication on the X axis, which is representative of the
memory traffic between tiles and caches in HammerBlade. We
also implemented the Ruche Channels using Synopsys Design
Compiler and Synopsys IC Compiler II in Global Foundries
12nm. We then ran the DRC-checked, APR’d physical design
though static timing, signal integrity and wire noise analysis
to establish that practical limits of how densely wires can be
packed in VLSI to maximize the number of Ruche Channels.

Network Latency Performance Results. Figure 5 shows
that a Fully Populated Crossbar Ruche Network has the best
unloaded latencies, followed by the area-optimized Ruche
Network with depopulated crossbar and finally the Express
Cube. We can see that regardless of the size of the machine,
the jump from a Ruche Factor of 1 to 2 yield the largest
improvement between two consecutive Ruche Factor values.
The optimal Ruche Factor is also quite small for all networks
across all machine sizes. For a machine size of 16, the
depopulated Ruche Network and the Express Cube are both
latency optimized with a Ruche Factor of 3 while the fully
populated Ruche Network is optimal with a Ruche Factor of
4, outperforming a Ruche Factor of 3 by only 2 cycles. As
the machine size increases, so does the optimal Ruche Factor;
however, even for a machine of size 128 the depopulated
Ruche Network, fully populated Ruche Network and Express
Cube are optimal at Ruche Factors of 9, 10, and 7 respectively.

Network Balance Results. If Local Network routing band-
width is B then a Ruche Network with a Ruche Factor f
increases the cross sectional bandwidth by a factor of f ∗ B.
However, peak bandwidth improvements require some degree
of balancing between Ruche Network and Local Network.

Figure 6 shows the number of flits each tile in a 16 tile
wide machine routes on the Ruche Network or Local Network.
Generally, we would like load to be balanced across the two
kinds of networks, maximizing utilization of wiring resources.
While the Ruche Network adds an additional f ∗ B cross
sectional bandwidth, every tile only has access to one factor
of the Ruche Network therefore a load balance of 50/50 per

0 2 4 6 8 10 12 140

20

40

60

80

Fl
its

 S
en

t

(a) Ruche Depopulated (Factor 0)
Ruche Local

0 2 4 6 8 10 12 140

20

40

60

80
(g) Ruche Full (Factor 0)

Ruche Local

0 2 4 6 8 10 12 140

20

40

Fl
its

 S
en

t

(b) Ruche Depopulated (Factor 1)
Ruche Local

0 2 4 6 8 10 12 140

20

40

(h) Ruche Full (Factor 1)
Ruche Local

0 2 4 6 8 10 12 140

20

40

Fl
its

 S
en

t

(c) Ruche Depopulated (Factor 2)
Ruche Local

0 2 4 6 8 10 12 140

20

40

(i) Ruche Full (Factor 2)
Ruche Local

0 2 4 6 8 10 12 140

20

40

Fl
its

 S
en

t

(d) Ruche Depopulated (Factor 3)
Ruche Local

0 2 4 6 8 10 12 140

20

40
(j) Ruche Full (Factor 3)

Ruche Local

0 2 4 6 8 10 12 140

20

40

Fl
its

 S
en

t

(e) Ruche Depopulated (Factor 4)
Ruche Local

0 2 4 6 8 10 12 140

20

40
(k) Ruche Full (Factor 4)

Ruche Local

0 2 4 6 8 10 12 14
Tile Number

0

20

40

Fl
its

 S
en

t

(f) Ruche Depopulated (Factor 5)
Ruche Local

0 2 4 6 8 10 12 14
Tile Number

0

20

40
(l) Ruche Full (Factor 5)

Ruche Local

Fig. 6: As the Ruche Factor increases the balance start to
over-burden the Local Network causing a bottleneck in the
performance of the system. The area-optimized Depopulated
Crossbar Ruche Network adds additional burden on the Local
Network compared to the Fully Populated Ruche Network as
every flit must end with a traversal over the Local Network.
When the Ruche Factor is equal to 1 as in (b) and (h) we
use a different routing algorithm to achieve near equal load
balancing between the networks.

tile is desirable. Figure 6 (a,g) are the base cases where the
Ruche Factor is 0, i.e. a standard mesh network. Figure 6 (b,h)
with Ruche Factor of 1 do not follow the same trend as the
rest of the graphs because of the superior routing algorithm
describe in Section III.

When the Ruche Factor is equal to 2 or greater we see trends
starting to emerge. First, as the Ruche Factor increases we see
a shift in utilization from the Ruche Network to the Local
Network. This is because flits must travel more hops because

7.43X7.43X

M3 (H)

M1 (H)

M2 (V)

VDD
VIA

VDD
VIA

VSS
VIA

VSS
VIA

V2

V1

3X

1X 3X

1X

Fig. 7: Cross-sectional view of metal layers in our extremely high-bandwidth Ruche Network. Power via arrays are placed
periodically, and they block some routing tracks. 16 tracks of wires can be placed between two via stacks. There is a minimum
spacing required between the wires and via metal.

the Ruche Channel would overshoot the destination, so fewer
and fewer flits are actually put on the network. Furthermore
we can see that for the same Ruche Factor, the depopulated
crossbar variant of the Ruche router utilizes the Local Network
more than the full crossbar Ruche router. This is because
the depopulated Ruche router forces all flits to use the Local
Network for the final link traversal. When the Ruche Network
is heavily utilized like we see in Figure 6 (c) this is actually
beneficial compared to the full crossbar Ruche router seen in
Figure 6 (i).

V. IMPLEMENTATION

In this section, we provide the methodology for physical
design of Ruche Networks. A key property of Ruche Networks
is that they can be used to convert excess VLSI wiring
resources into additional bandwidth and reduced network
diameter. However, excessively close, long parallel wires may
lead to capacitive coupling and resulting noise glitches and
signal integrity based timing delays and non-functioning chips
if the proper analysis is not done.

Fortunately, noise analysis is standard in modern CAD
tools. Parasitic extraction combined with static timing analysis
can accurately calculate the impact of crosstalk; however,
since physical design involves lots of effort and time, this
paper develops some handy guidelines to implement Ruche
Networks in a systematic way.

The central question is, how far can we push it? Although
some designs will not need this much bandwidth, our results
suggest that you can attain 50% utilization of wiring resources;
essentially every other wiring track in the dense, medium range
2X metal layers.
Toolbox of Techniques. We conducted a series of experiments
to study the properties of the wires and understand how
signals behave under various routing configurations. Conven-
tional wisdom [12], [13], [14] states that timing and energy
optimized wiring employs single-width wires that are spaced
apart by skipping wiring tracks (“double spacing”), but also
that in cases where there is too much noise, adding shield wires
may be necessary, slowing down the wires and increasing
energy. It also suggests that it is desirable to “schedule”
wires so that neighbor wires do not switch at the same time.

Finally, it suggests that staggering repeaters is very effective in
eliminating both noise and capacitive coupling timing effects.
We found that the latter technique was too challenging to
implement in a real design, and that double spacing alone was
not sufficient to eliminate noise, and that shielding-by-default
was at least 2× slower in wiring delay. However, by combining
spacing and running the different, delayed segments of long
Ruche Channels in parallel, we were able to achieve optimal
results. Moreover, we realized that triple spacing of wires
would not actually improve things significantly, because metal
density rules in VLSI require that the space be filled with metal
anyways, essentially eliminating the benefit of the space.
Experiments. Our design pushes the limits of Ruche Networks
to the extreme and make use of every other wiring track (minus
those blocked by power taps) across two horizontal metal
layers across the 178u edge of a tile, as shown in Figure 7,
comprising an eye-popping 1100+ wires. This is an 8-20×
increase in bandwidth density versus typical NoC designs.

To quantify noise and signal integrity effects, we first
created a design with a set of long parallel wires driven by
inverters from one end. Generally, wires on the edge that have
only one aggressor are less vulnerable to crosstalk. First, we
varied the spacing between wires that are all on the same
metal layer to determine the maximum density of wires that
can be routed on each metal layer without too much signal
degradation. For single-spaced wires (no empty track between
wires), the net delay can be as much as 1.6× worse than
double-spaced wires. Single-spaced wires also have signals
that failed static noise analysis. Double-spaced wires did not
fail and had about half of the noise margin left.

Second, we vary the input delay on every other wire to find
the minimum difference in arrival time required to mitigate
the Miller coupling effect, which increases wire delay. Miller
coupling reductions improved as the arrival times grew further
apart. Therefore we want to make sure that neighboring wires
do not switch at the same time. A similar effect can be
observed when the wires with opposite signal direction are
interleaved. Depending on the design this can make routing
more difficult if the wires have to travel longer distance.

Third, we tried different inverter drive strengths and a dif-
ferent number of inverter stages to cover the required distance.

4x
16x

Local Router

EW

Ruche RouterINV0

INV1

INV2

TILE 4 TILE 5 TILE 6 TILE 7

4x

4x
16x INV0

INV1

INV2

16x

16x
X X X X

X X X X

crossbar

X

Ruche Router

Local Router

crossbar

X X X

4x

x0

x1

x2

x3

x0

x1

x2

x3

Fig. 8: Wires that are far apart in terms of signal arrival time are placed on the same layer to minimize the Miller
effect. The color of wires indicates metal layer. Metal layer changes after each inverter stage. The upper half of a tile contains
a ruche network going to east. The bottom half goes to west.

Inverters with greater driver strengths are generally good for
improving net delay and are more resilient to crosstalk but
have greater area, dissipate more energy, have larger cell
delays and cause more crosstalk on neighboring signals.

Next, we tried interleaving wires on different metal layers.
Between two horizontal routing layers is a vertical routing
layer (and two via layers), so the actual distance between wires
on different layers is quite far. Wires are usually thicker than
they are wide, so most coupling capacitance comes from the
adjacent wires on the same metal layer (Figure 7).

We also investigated utilizing upper metal layers which have
bigger and much faster, lower resistance wires. Our surprising
conclusion is that the noise on these wires prevents single track
spacing, and thus the resulting number of usable wires is not
worth the trouble. We ended up reserving this layer for routing
the long trunks of a clock tree since we will be utilizing many
lower layer wiring tracks to route the Ruche Network.

Finally, combining these insights, we implemented a 138-bit
wide version of Figure 8 as a proof of concept to demonstrate
that the Ruche Network topology can achieve reasonably good
noise slack and meet our timing requirement. A set of 4X
DFFs is spaced at a distance of one tile width (∼141 um)
from another set modeling router launch. These wires are
repeatered by 16X inverters. Long wires from different buses
are interleaved bitwise on two alternating metal layers, such
that wires are double-spaced in each layer. From earlier results,
we found that the nets, X1 and X2, were not spaced far apart
from each other in terms of arrival time of signals, so we
interleaved X1 and X3 on the same layer instead in order to
minimize the Miller capacitance.

Timing Arc Delay (ps) Timing Arc Delay (ps)
clk-to-q 117 x0 33
INV0 33 x1 34
INV1 19 x2 35
INV2 26 x3 13
setup 17

Total Gate Delay 212 Total Net Delay 115

TABLE I: Under worst-case 2 GHz timing constraint, this
interconnect should be able to propagate signals roughly
over 3 tiles distance, while reserving half of the cycle time
for the router. Wire-related delay is about 225ps for long
wires in Ruche Factor 3 crossing 0.42mm.

Wire delay (bad!) and noise slack (good!) are plotted in
Figure 9 and Figure 10 with the X-axis being the position of
the wires in each bus type. There are periodic spikes where the
noise margin increases on wires occurring on edges of the bus,
which confirm that the wires on the edge are more resilient to
crosstalk. Even though the input wires to INV1 and INV2 are
the longest segment in the interconnect, we can see that the
wire delay and noise slack are excellent.

VI. CONCLUSION

Our future HammerBlade ASICs will incorporate this Ruche
Network and we will report on results. We are excited to see
more research on this topic and see others take advantage of
the insights we have provided in this paper. Please contact us
if you have any questions!

0 20 40 60 80 100 120 140
0

20

40

Local DFF

0 20 40 60 80 100 120 140
0

20

40

INV1

0 20 40 60 80 100 120 140
0

20

40

W
ire

 D
el

ay
 (p

s)

INV2

0 20 40 60 80 100 120 140
0

20

40

Ruche DFF

0 20 40 60 80 100 120 140
Wire Index

0

20

40

INV0

Fig. 9: Ordering and spacing the interconnect wires was
sufficient to drive down wire delay. The gray part in each
bar indicates the portion of delay that is induced by crosstalk.
The black part is the delay on a wire itself. It can be seen that
crosstalk-induced delay can be larger than the intrinsic wire
delay for long wires (INV1, INV2).

REFERENCES

[1] M. B. Taylor, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank,
S. Amarasinghe, A. Agarwal, W. Lee, J. Miller, D. Wentzlaff, I. Bratt,
B. Greenwald, H. Hoffmann, P. Johnson, and J. Kim, “Evaluation of the
Raw microprocessor: an exposed-wire-delay architecture for ILP and
streams,” in International Symposium on Computer Architecture, 2004,
pp. 2–13.

[2] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C. Miao, J. F. Brown III, and A. Agarwal, “On-Chip
Interconnection Architecture of the Tile Processor,” IEEE Micro, vol. 27,
no. 5, pp. 15–31, 2007.

[3] S. Davidson, S. Xie, C. Torng, K. Al-Hawai, A. Rovinski, T. Ajayi,
L. Vega, C. Zhao, R. Zhao, S. Dai, A. Amarnath, B. Veluri, P. Gao,
A. Rao, G. Liu, R. K. Gupta, Z. Zhang, R. Dreslinski, C. Batten, and
M. B. Taylor, “The Celerity Open-Source 511-Core RISC-V Tiered
Accelerator Fabric: Fast Architectures and Design Methodologies for
Fast Chips,” IEEE Micro, vol. 38, no. 2, pp. 30–41, Mar 2018.

[4] A. Rovinski, C. Zhao, K. Al-Hawaj, P. Gao, S. Xie, C. Torng, S. David-
son, A. Amarnath, L. Vega, B. Veluri, A. Rao, T. Ajayi, J. Puscar, S. Dai,
R. Zhao, D. Richmond, Z. Zhang, I. Galton, C. Batten, M. B. Taylor,
and R. G. Dreslinski, “Evaluating Celerity: A 16-nm 695 Giga-RISC-
V Instructions/s Manycore Processor With Synthesizable PLL,” IEEE
Solid-State Circuits Letters, vol. 2, no. 12, pp. 289–292, 2019.

[5] M. McKeown, A. Lavrov, M. Shahrad, P. J. Jackson, Y. Fu, J. Balkind,
T. M. Nguyen, K. Lim, Y. Zhou, and D. Wentzlaff, “Power and Energy
Characterization of an Open Source 25-Core Manycore Processor,” in
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2018, pp. 762–775.

0 20 40 60 80 100 120 140
0.0

0.1

0.2

Local DFF

0 20 40 60 80 100 120 140
0.0

0.1

0.2

INV1

0 20 40 60 80 100 120 140
0.0

0.1

0.2

No
ise

 S
la

ck
 (V

)

INV2

0 20 40 60 80 100 120 140
0.0

0.1

0.2

Ruche DFF

0 20 40 60 80 100 120 140
Wire Index

0.0

0.1

0.2

INV0

Fig. 10: Spacing the interconnect wires was sufficient
to contain noise due to capacitive coupling of densely
packed, high-bandwidth NoC wires. Peaks are for wires near
power/ground via arrays.

[6] K. S. Shim, M. Lis, M. H. Cho, I. Lebedev, and S. Devadas, “De-
sign tradeoffs for simplicity and efficient verification in the Execution
Migration Machine,” in International Conference on Computer Design
(ICCD), 2013, pp. 145–153.

[7] Y. Ou, S. Agwa, and C. Batten, “Implementing Low-Diameter On-
Chip Networks for Manycore Processors Using a Tiled Physical Design
Methodology,” in NOCS, 2020.

[8] W. J. Dally, “Express Cubes: Improving the Performance of k-Ary n-
Cube Interconnection Networks,” IEEE Trans. Comput., vol. 40, no. 9,
p. 1016–1023, Sep. 1991.

[9] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, “Express Virtual
Channels: Towards the Ideal Interconnection Fabric,” in International
Symposium on Computer Architecture. New York, NY, USA: Associ-
ation for Computing Machinery, 2007, p. 150–161.

[10] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Express Cube
Topologies for on-Chip Interconnects,” in International Symposium on
High Performance Computer Architecture, 2009, pp. 163–174.

[11] D. Petrisko, C. Zhao, S. Davidson, P. Gao, D. Richmond, and M. B.
Taylor, “NoC Symbiosis,” in NOCS, 2020.

[12] A. B. Kahng, S. Muddu, and E. Sarto, “Tuning strategies for global
interconnects in high-performance deep-submicron ICs,” VLSI Design,
vol. 10, no. 1, pp. 21–34, 1999.

[13] A. B. Kahng, S. Muddu, E. Sarto, and R. Sharma, “Interconnect tuning
strategies for high-performance ICs,” in Design, Automation, and Test
in Europe. Springer, 2008, pp. 359–376.

[14] P. Gupta and A. B. Kahng, “Wire swizzling to reduce delay uncertainty
due to capacitive coupling,” in International Conference on VLSI
Design. IEEE, 2004, pp. 431–436.

