
Celerity: An Open Source RISC-V
Tiered Accelerator Fabric

Tutu Ajayi‡, Khalid Al-Hawaj†, Aporva Amarnath‡, Steve Dai†, Scott Davidson*, Paul Gao*,

Gai Liu†, Atieh Lotfi*, Julian Puscar*, Anuj Rao*, Austin Rovinski‡, Loai Salem*,

Ningxiao Sun*, Christopher Torng†, Luis Vega*, Bandhav Veluri*, Xiaoyang Wang*,

Shaolin Xie*, Chun Zhao*, Ritchie Zhao†,

Christopher Batten†, Ronald G. Dreslinski‡, Ian Galton*, Rajesh K. Gupta*,

Patrick P. Mercier*, Mani Srivastava§, Michael B. Taylor*, Zhiru Zhang†

* University of California, San Diego
† Cornell University

‡ University of Michigan
§ University of California, Los Angeles

Hot Chips 29 August 21, 2017

High-Performance Embedded Computing
• Embedded workloads are abundant and evolving

• Video decoding on mobile devices

• Increasing bitrates, new emerging codecs

• Machine learning (speech recognition, text prediction, …)
• Algorithm changes for better accuracy and energy performance

• Wearable and mobile augmented reality

• Still new, rapidly changing models and algorithms

• Real-time computer vision for autonomous vehicles

• Faster decision making, better image recognition

• We are in the post-Dennard scaling era
• Cost of energy > Cost of area

• How do we attain extreme energy-efficiency while
also maintaining flexibility for evolving workloads?

http://clipartfan.com/wp-content/uploads/2017/03/car-clipart-black-and-white-car-black-and-white-images.png
http://www.clker.com/cliparts/9/t/V/w/x/j/head-outline-md.png

• TSMC 16nm FFC

• 25mm2 die area (5mm x 5mm)

• ~385 million transistors

• 511 RISC-V cores
• 5 Linux-capable “Rocket Cores”

• 496-core mesh tiled array “Manycore”

• 10-core mesh tiled array “Manycore” (low voltage)

• 1 Binarized Neural Network Specialized Accelerator

• On-chip synthesizable PLLs and DC/DC LDO
• Developed in-house

• 3 Clock domains
• 400 MHz – DDR I/O

• 625 MHz – Rocket core + Specialized accelerator

• 1.05 GHz – Manycore array

• 672-pin flip chip BGA package

• 9-months from PDK access to tape-out

Celerity: Chip Overview

Tiered Accelerator Fabric

Case Study: Mapping Flexible Image
Recognition to a Tiered Accelerator Fabric

Meeting Aggressive Time Schedule

Conclusion

Celerity Overview

Decomposition of Embedded Workloads

• General-purpose computation
• Operating systems, I/O, etc.

• Flexible and energy-efficient
• Exploits coarse- and fine-grain parallelism

• Fixed-function
• Extremely strict energy efficiency requirementsEnergy

Efficiency

Flexibility

Tiered Accelerator Fabric

An architectural template that maps
embedded workloads onto distinct tiers to

maximize energy efficiency while
maintaining flexibility.

Tiered Accelerator Fabric

General-Purpose Tier

General-purpose
computation, control

flow and memory
management

Tiered Accelerator Fabric

Massively Parallel Tier

General-Purpose Tier

Flexible exploitation
of coarse and fine
grain parallelism

Tiered Accelerator Fabric

Massively Parallel Tier

Specialization Tier

General-Purpose Tier

Fixed-function
specialized accelerators

for energy efficiency
requirements

Mapping Workloads onto Tiers

Massively Parallel Tier
Exploitation of coarse and fine grain parallelism

to achieve better energy efficiency

Specialization Tier
Specialty hardware blocks to meet strict energy

efficiency requirements

General-Purpose Tier
General-purpose SPEC-style compute, operating systems,

I/O and memory management

Energy
Efficiency

Flexibility

Celerity: General-Purpose Tier
O

ff
-C

h
ip

 I/
O

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache
A

X
I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o

C
CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o

C
CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o

C
CRISC-V Rocket Core

I-CacheD-Cache

General-Purpose Tier: RISC-V Rocket Cores

• Role of the General-Purpose Tier

• General-purpose SPEC-style compute

• Exception handling

• Operating system (e.g. TCP/IP Stack)

• Cached memory hierarchy for all tiers

• In Celerity

• 5 Rocket Cores, generated from Chisel
(https://github.com/freechipsproject/rocket-chip)

• 5-stage, in-order, scalar processor

• Double-precision floating point

• I-Cache: 16KB 4-way assoc.

• D-Cache: 16KB 4-way assoc.

• RV64G ISA

• 0.97 mm2 per Rocket core @ 625 MHz

http://www.lowrisc.org/docs/tagged-memory-v0.1/rocket-core/

Celerity: Massively Parallel Tier
O

ff
-C

h
ip

 I/
O

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache
A

X
I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o

C
CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o

C
CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o

C
CRISC-V Rocket Core

I-CacheD-Cache

RISC-V

Vanilla-5

Core

I Mem
X

B
A

R

N
o
C

 R
o
u

te
r

D Mem

Massively Parallel Tier: Manycore Array
• Role of the Massively Parallel Tier

• Flexibility and improved energy efficiency over the
general-purpose tier by massively exploiting
parallelism

• In Celerity
• 496 low power RISC-V Vanilla-5 cores

• 5-stage, in-order, scalar cores

• Fully distributed memory model

• 4KB instruction memory per tile

• 4KB data memory per tile

• RV32IM ISA

• 16x31 tiled mesh array

• Open source!

• 80 Gbps full duplex links between each adjacent tile

• 0.024mm2 per tile @ 1.05 GHz

...

… … …...

...

...

...

… … …

NOC
Router

RISC-V
Core

M
EM

C

ro
ss

b
ar

DMEM

IMEM

Manycore Array (Cont.)
• XY-dimension network-on-chip (NoC)

• Unlimited deadlock-free communication

• Manycore I/O uses same network

• Remote store programming model

• Word writes into other tile’s data memory

• MIMD programming model

• Fine-grain parallelism through high-speed
communication between tiles

• Token-Queue architectural primitive

• Reserves buffer space in remote core

• Ensures buffer is filled before accessed

• Tight producer-consumer synchronization

• Streaming programming model

• Producer-consumer parallelism

…

… … ………

X=0
Y=n

X=m
Y=n

Manycore I/O
X = 0 .. m
Y = n+1

80 bits/cycle output

80 bits/cycle input

Input
Split Join

Feedback

Pipeline

Output

Stream Programming SPMD Programming

D
at

a
O

u
t

D
at

a
In

D
at

a
O

u
t

D
at

a
In

D
at

a
O

u
t

D
at

a
In

D
at

a
O

u
t

D
at

a
In

Manycore Array (Cont.)

[1] J. Balkind, et al. “OpenPiton : An Open Source Manycore Research Framework,” in the International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2016.
[2] R. Balasubramanian, et al. "Enabling GPGPU Low-Level Hardware Explorations with MIAOW: An Open-Source RTL Implementation of a GPGPU," in ACM Transactions on Architecture and Code Optimization (TACO). 12.2 (2015): 21.

Configuration
Normalized

Area (32nm)

Area

Ratio

Celerity Tile

@16nm
D-MEM = 4KB

I-MEM = 4KB

0.024 * (32/16)2

= 0.096 mm2
1x

OpenPiton Tile

@32nm

L1 D-Cache = 8KB

L1 I-Cache = 8KB

L1.5/L2 Cache = 40KB

1.17 mm2 [1] 12x

Raw Tile

@180nm
L1 D-Cache = 32KB

L1 I-SRAM = 96KB

16.0 * (32/180)2

= 0.506 mm2
5.25x

MIAOW GPU

Compute Unit Lane

@32nm

VRF = 256KB

SRF = 2KB

15.0 / 16

= 0.938 mm2 [2]
9.75x 0

0.25

0.5

0.75

1

Celerity OpenPiton Raw MIAOW (GPU)

Normalized Physical Threads (ALUops) per Area

Celerity: Specialization Tier
O

ff
-C

h
ip

 I/
O

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache
A

X
I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o

C
CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o

C
CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o

C
CRISC-V Rocket Core

I-CacheD-Cache

RISC-V

Vanilla-5

Core

I Mem
X

B
A

R

N
o
C

 R
o
u

te
r

D Mem

Specialization Tier: Binarized Neural Network

• Role of the Specialization Tier

• Achieves high energy efficiency through specialization

• In Celerity

• Binarized Neural Network (BNN)

• Energy-efficient convolutional neural network implementation

• 13.4 MB model size with 9 total layers

• 1 Fixed-point convolutional layer

• 6 Binary convolutional layers

• 2 Dense fully connected layers

• Batch norm calculations done after each layer

• 0.356 mm2 @ 625 MHz

Parallel Links Between Tiers
O

ff
-C

h
ip

 I/
O

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache
A

X
I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o

C
CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o

C
CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o

C
CRISC-V Rocket Core

I-CacheD-Cache

RISC-V

Vanilla-5

Core

I Mem
X

B
A

R

N
o
C

 R
o
u

te
r

D Mem

General-Purpose
Tier

Massively Parallel
Tier

Specialization
Tier

Tiered Accelerator Fabric

Case Study: Mapping Flexible Image
Recognition to a Tiered Accelerator Fabric

Meeting Aggressive Time Schedule

Conclusion

Celerity Overview

Case Study: Mapping Flexible Image Recognition to a
Tiered Accelerator Fabric

Three steps to map applications to tiered accelerator fabric:

Step 1. Implement the algorithm using the general-purpose tier

Step 2. Accelerate the algorithm using either the massively parallel tier
OR the specialization tier

Step 3. Improve performance by cooperatively using both the
specialization AND the massively parallel tier

Convolution Pooling Convolution Pooling Fully-connected

bird (0.02)
boat (0.94)

cat (0.04)
dog (0.01)

Massively Parallel Tier

Specialization Tier

General-Purpose Tier

Step 1: Algorithm to Application

Binarized Neural Networks

• Training usually uses floating point, while inference usually uses lower precision weights and

activations (often 8-bit or lower) to reduce implementation complexity

• Rastergari et al. [3] and Courbariaux et al. [4] have recently shown single-bit precision

weights and activations can achieve an accuracy of 89.8% on CIFAR-10

• Performance target requires ultra-low latency (batch size of one) and

high throughput (60 classifications/second)

[3] M. Rastergari, et al. “Xnor-net: Imagenet classification using binary convolutional neural networks,” In European Conference on Computer Vision, 2016.
[4] M. Courbariaux, et al. “Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or -1,” arXiv preprint arXiv:1602.02830 (2016).

Step 1: Algorithm to Application

Characterizing BNN Execution

• Using just the general-purpose tier is 200x slower than performance target

• Binarized convolutional layers consume over 97% of dynamic instruction count

• Perfect acceleration of just the binarized convolutional layers is still 5x slower than performance target

• Perfect acceleration of all layers using the massively parallel tier could meet performance target
but with significant energy consumption

Step 2: Application to Accelerator

BNN Specialized Accelerator

1. Accelerator is
configured to process
a layer through RoCC
command messages

2. Memory Unit starts
streaming the weights
into the accelerator
and unpacking the
binarized weights into
appropriate buffers

3. Binary convolution
compute unit
processes input fmaps
and weights to
produce output fmaps

Step 2: Application to Accelerator

BNN Specialized Accelerator

1. Accelerator is
configured to process
a layer through RoCC
command messages

2. Memory Unit starts
streaming the weights
into the accelerator
and unpacking the
binarized weights into
appropriate buffers

3. Binary convolution
compute unit
processes input fmaps
and weights to
produce output fmaps

Step 2: Application to Accelerator

BNN Specialized Accelerator
1. Accelerator is

configured to process a

layer through RoCC

command messages

2. Memory Unit starts

streaming the weights

into the accelerator and

unpacking the binarized

weights into appropriate

buffers

3. Binary convolution

compute unit processes

input activations and

weights to produce

output activations

Step 2: Application to Accelerator

BNN Specialized Accelerator
1. Accelerator is

configured to process a

layer through RoCC

command messages

2. Memory Unit starts

streaming the weights

into the accelerator and

unpacking the binarized

weights into appropriate

buffers

3. Binary convolution

compute unit processes

input activations and

weights to produce

output activations

Step 2: Application to Accelerator

BNN Specialized Accelerator
1. Accelerator is

configured to process a

layer through RoCC

command messages

2. Memory Unit starts

streaming the weights

into the accelerator and

unpacking the binarized

weights into appropriate

buffers

3. Binary convolution

compute unit processes

input activations and

weights to produce

output activations

Step 2: Application to Accelerator

BNN Specialized Accelerator
1. Accelerator is

configured to process a

layer through RoCC

command messages

2. Memory Unit starts

streaming the weights

into the accelerator and

unpacking the binarized

weights into appropriate

buffers

3. Binary convolution

compute unit processes

input activations and

weights to produce

output activations

Step 2: Application to Accelerator

BNN Specialized Accelerator
1. Accelerator is

configured to process a

layer through RoCC

command messages

2. Memory Unit starts

streaming the weights

into the accelerator and

unpacking the binarized

weights into appropriate

buffers

3. Binary convolution

compute unit processes

input activations and

weights to produce

output activations

Step 2: Application to Accelerator

BNN Specialized Accelerator
1. Accelerator is

configured to process a

layer through RoCC

command messages

2. Memory Unit starts

streaming the weights

into the accelerator and

unpacking the binarized

weights into appropriate

buffers

3. Binary convolution

compute unit processes

input activations and

weights to produce

output activations

Step 2: Application to Accelerator

BNN Specialized Accelerator
1. Accelerator is

configured to process a

layer through RoCC

command messages

2. Memory Unit starts

streaming the weights

into the accelerator and

unpacking the binarized

weights into appropriate

buffers

3. Binary convolution

compute unit processes

input activations and

weights to produce

output activations

Step 2: Application to Accelerator

Design Methodology

void bnn::dma_req() {

while(1) {

DmaMsg msg = dma_req.get();

for (int i = 0; i < msg.len; i++) {

HLS_PIPELINE_LOOP(HARD_STALL, 1);

int req_type = 0;

word_t data = 0;

addr_t addr = msg.base + i*8;

if (type == DMA_TYPE_WRITE) {

data = msg.data;

req_type = MemReqMsg::WRITE;

} else {

req_type = MemReqMsg::READ;

}

memreq.put(MemReqMsg(req_type,addr,data));

}

dma_resp.put(DMA_REQ_DONE);

}

}

SystemCConstraints

StratusHLS

RTL

PyMTL

Wrappers &

Adapters

Final RTL

Step 2: Application to Accelerator

Design Methodology
o HLS enabled quick implementation of an

accelerator for an emerging algorithm

▪ Algorithm to initial accelerator in weeks

▪ Rapid design-space exploration

o HLS greatly simplified timing closure

▪ Improved clock frequency by 43% in few days

▪ Easily mitigated long paths at the interfaces
with latency insensitive interfaces and
pipeline register insertion

o HLS tools are still evolving

▪ Six weeks to debug tool bug with data-
dependent access to multi-dimensional arrays

SystemCConstraints

StratusHLS

RTL

PyMTL

Wrappers &

Adapters

Final RTL

O
ff

-C
h

ip
 I/

O

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

Step 2: Application to Accelerator

General-Purpose Tier for Weight Storage
• The BNN specialized

accelerator can use one of the

Rocket cores’ caches to load

every layer’s weights; but, it is

inefficient due to off-chip traffic

• A large L2 or more storage in

the BNN specialized accelerator

could improve performance

• Instead, weights can be stored

in the massively parallel tier

• Each core in the massively

parallel tier executes a remote-

load-store program to

orchestrate sending weights to

the specialization tier via a

hardware FIFO

O
ff

-C
h

ip
 I/

O

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

Step 2: Application to Accelerator

General-Purpose Tier for Weight Storage
• The BNN specialized

accelerator can use one of the

Rocket cores’ caches to load

every layer’s weights; but, it is

inefficient due to off-chip traffic

• A large L2 or more storage in

the BNN specialized accelerator

could improve performance

• Instead, weights can be stored

in the massively parallel tier

• Each core in the massively

parallel tier executes a remote-

load-store program to

orchestrate sending weights to

the specialization tier via a

hardware FIFO

O
ff

-C
h

ip
 I/

O

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

Step 2: Application to Accelerator

General-Purpose Tier for Weight Storage
• The BNN specialized

accelerator can use one of the

Rocket cores’ caches to load

every layer’s weights; but, it is

inefficient due to off-chip traffic

• A large L2 or more storage in

the BNN specialized accelerator

could improve performance

• Instead, weights can be stored

in the massively parallel tier

• Each core in the massively

parallel tier executes a remote-

load-store program to

orchestrate sending weights to

the specialization tier via a

hardware FIFO

O
ff

-C
h

ip
 I/

O

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

Step 3: Assisting Accelerators

General-Purpose Tier for Weight Storage
• The BNN specialized

accelerator can use one of the

Rocket cores’ caches to load

every layer’s weights; but, it is

inefficient due to off-chip traffic

• A large L2 or more storage in

the BNN specialized accelerator

could improve performance

• Instead, weights can be stored

in the massively parallel tier

• Each core in the massively

parallel tier executes a remote-

load-store program to

orchestrate sending weights to

the specialization tier via a

hardware FIFO

Step 3: Assisting Accelerators

Massively Parallel Tier for Weight Storage
O

ff
-C

h
ip

 I/
O

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

• The BNN specialized

accelerator can use one of the

Rocket cores’ caches to load

every layer’s weights; but, it is

inefficient due to off-chip traffic

• A large L2 or more storage in

the BNN specialized accelerator

could improve performance

• Instead, weights can be stored

in the massively parallel tier

• Each core in the massively

parallel tier executes a remote-

load-store program to

orchestrate sending weights to

the specialization tier via a

hardware FIFO

Step 3: Assisting Accelerators

Massively Parallel Tier for Weight Storage
O

ff
-C

h
ip

 I/
O

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

RISC-V

Vanilla-5

Core

I Mem

X
B

A
R

N
o
C

 R
o
u
te

r

D Mem

• The BNN specialized

accelerator can use one of the

Rocket cores’ caches to load

every layer’s weights; but, it is

inefficient due to off-chip traffic

• A large L2 or more storage in

the BNN specialized accelerator

could improve performance

• Instead, weights can be stored

in the massively parallel tier

• Each core in the massively

parallel tier executes a remote-

load-store program to

orchestrate sending weights to

the specialization tier via a

hardware FIFO

Step 3: Assisting Accelerators

Massively Parallel Tier for Weight Storage
O

ff
-C

h
ip

 I/
O

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

• The BNN specialized

accelerator can use one of the

Rocket cores’ caches to load

every layer’s weights; but, it is

inefficient due to off-chip traffic

• A large L2 or more storage in

the BNN specialized accelerator

could improve performance

• Instead, weights can be stored

in the massively parallel tier

• Each core in the massively

parallel tier executes a remote-

load-store program to

orchestrate sending weights to

the specialization tier via a

hardware FIFO

Step 3: Assisting Accelerators

Massively Parallel Tier for Weight Storage
• The BNN specialized

accelerator can use one of the

Rocket cores’ caches to load

every layer’s weights; but, it is

inefficient due to off-chip traffic

• A large L2 or more storage in

the BNN specialized accelerator

could improve performance

• Instead, weights can be stored

in the massively parallel tier

• Each core in the massively

parallel tier executes a remote-

load-store program to

orchestrate sending weights to

the specialization tier via a

hardware FIFO

O
ff

-C
h

ip
 I/

O

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

RISC-V

Vanilla-5

Core

I Mem

X
B

A
R

N
o
C

 R
o
u
te

r

D Mem

Step 3: Assisting Accelerators

Massively Parallel Tier for Weight Storage
O

ff
-C

h
ip

 I/
O

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

• The BNN specialized

accelerator can use one of the

Rocket cores’ caches to load

every layer’s weights; but, it is

inefficient due to off-chip traffic

• A large L2 or more storage in

the BNN specialized accelerator

could improve performance

• Instead, weights can be stored

in the massively parallel tier

• Each core in the massively

parallel tier executes a remote-

load-store program to

orchestrate sending weights to

the specialization tier via a

hardware FIFO

Step 3: Assisting Accelerators

Massively Parallel Tier for Weight Storage
O

ff
-C

h
ip

 I/
O

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

• The BNN specialized

accelerator can use one of the

Rocket cores’ caches to load

every layer’s weights; but, it is

inefficient due to off-chip traffic

• A large L2 or more storage in

the BNN specialized accelerator

could improve performance

• Instead, weights can be stored

in the massively parallel tier

• Each core in the massively

parallel tier executes a remote-

load-store program to

orchestrate sending weights to

the specialization tier via a

hardware FIFO

Step 3: Assisting Accelerators

Massively Parallel Tier for Weight Storage
O

ff
-C

h
ip

 I/
O

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

• The BNN specialized

accelerator can use one of the

Rocket cores’ caches to load

every layer’s weights; but, it is

inefficient due to off-chip traffic

• A large L2 or more storage in

the BNN specialized accelerator

could improve performance

• Instead, weights can be stored

in the massively parallel tier

• Each core in the massively

parallel tier executes a remote-

load-store program to

orchestrate sending weights to

the specialization tier via a

hardware FIFO

Step 3: Assisting Accelerators

Massively Parallel Tier for Weight Storage
O

ff
-C

h
ip

 I/
O

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

A
X

I

R
o
C

CRISC-V Rocket Core

I-CacheD-Cache

• The BNN specialized

accelerator can use one of the

Rocket cores’ caches to load

every layer’s weights; but, it is

inefficient due to off-chip traffic

• A large L2 or more storage in

the BNN specialized accelerator

could improve performance

• Instead, weights can be stored

in the massively parallel tier

• Each core in the massively

parallel tier executes a remote-

load-store program to

orchestrate sending weights to

the specialization tier via a

hardware FIFO

Performance Benefits of Cooperatively Using the
Massively Parallel and the Specialization Tiers

General-Purpose Tier
Software implementation assuming ideal performance estimated

with an optimistic one instruction per cycle

Specialization Tier
Full-system RTL simulation of the BNN specialized accelerator

running with a frequency of 625 MHz

Specialization + Massively

Parallel Tiers

Full-system RTL simulation of the BNN specialized accelerator with

the weights being streamed from the manycore

General-Purpose

Tier
Specialization Tier

Specialization +

Massively Parallel

Tiers

Runtime per
Image (ms) 4,024 5.8 3.3

Speedup 1x ~700x ~1,220x

Tiered Accelerator Fabric

Case Study: Mapping Flexible Image
Recognition to a Tiered Accelerator Fabric

Meeting Aggressive Time Schedule

Conclusion

Celerity Overview

How to make a complex SoC?
• Reuse

• Open-source and third-party IP

• Extensible and parameterizable designs

• Modularize
• Agile design and development

• Early interface specification

• Automate
• Abstracted implementation and testing flows

• Highly automated design

How to make a complex SoC?
• Reuse

• Open-source and third-party IP

• Extensible and parameterizable designs

• Modularize
• Agile design and development

• Early interface specification

• Automate
• Abstracted implementation and testing flows

• Highly automated design

in 9 months

How to make a complex SoC?
• Reuse

• Open-source and third-party IP

• Extensible and parameterizable designs

• Modularize
• Agile design and development

• Early interface specification

• Automate
• Abstracted implementation and testing flows

• Highly automated design

with grad

students

in 9 months

How to make a complex SoC?
• Reuse

• Open-source and third-party IP

• Extensible and parameterizable designs

• Modularize
• Agile design and development

• Early interface specification

• Automate
• Abstracted implementation and testing flows

• Highly automated design

with grad

students

in 9 months

across 4

locations

How to make a complex SoC?
• Reuse

• Open-source and third-party IP

• Extensible and parameterizable designs

• Modularize
• Agile design and development

• Early interface specification

• Automate
• Abstracted implementation and testing flows

• Highly automated design

with grad

students

in 9 months

across 4

locations

in 16nm

How to make a complex SoC?
• Reuse

• Open-source and third-party IP

• Extensible and parameterizable designs

• Modularize
• Agile design and development

• Early interface specification

• Automate
• Abstracted implementation and testing flows

• Highly automated design

with grad

students

in 9 months

across 4

locations

in 16nm
with

$1.3M

Reuse
• Basejump: Open-source polymorphic HW components

• Design libraries: BSG IP Cores, BGA Package, I/O Pad Ring
• Test infrastructure: Double Trouble PCB, Real Trouble PCB
• Available at bjump.org

• RISC-V: Open-source ISA
• Rocket core: high performance RV64G in-order core
• Vanilla-V: high efficiency RV32IM in-order core

• RoCC: Open-source on-chip interconnect
• Common interface to connect all 3 compute tiers

• Extensible designs
• BSG Manycore: fully parameterized RTL and APR scripts

• Third Party IP
• ARM Standard Cells, I/O cells, RF/SRAM generators

http://bjump.org/

Modularize
• Agile design

• Hierarchical design to reduce tool time

• Optimize designs at the component level

• Black-box designs for use across teams

• SCRUM-like task management

• Sprinting to “tape-ins”

• Establish interfaces early
• Establish design interfaces early (RoCC, Basejump)

• Use latency-insensitive interfaces to remove cross-
module timing dependencies

• Identify specific deliverables between different teams
(esp. analog→digital)

Automate
• Abstract implementation and testing flows

• Develop implementation flow adaptable to
arbitrary designs

• Use validated IP components to focus only on
integration testing

• Use high-level testing abstractions to speed up
test development (PyMTL)

• Automate design using tools
• Use High-Level Synthesis to speed up design-

space exploration and implementation

• Use digital design flow to create traditionally
analog components

Synthesizable PLL
• Reuse

• Interfaces and some components reused
from previous designs

• Modularize

• Controlled via SPI-like interface

• Isolated voltage domain for all 3 PLLs to
remove power rail noise

• Automate

• Fully synthesized using digital standard cells

• Manual placement of ring oscillators,
auto-placement of other logic

• Very easy to create additional DCOs that
cover additional frequency ranges

Area 0.0059 mm
2

Frequency range* 20 - 3000 MHz

Frequency step* 2%

Period jitter* 2.5 ps

ΔΣ
FDC

Digital
Loop
Filter DCO

1

1 − 𝑧2

DCO

SPI

Prog.
Divider

fref

* Collected via SPICE on extracted netlist

Controller Area < 0.0023 mm
2

Decap Area < 0.0741 mm
2

Voltage Range 0.45 – 0.85 V

Peak Efficiency > 99.8 %

Synthesizable LDO
• Reuse

• Taped out and tested in 65nm [5],
waiting on 16nm results

• Automate
• Fully synthesized controller

• Custom power switching transistors

• Post-silicon tunable

• Compared to conventional N-bit
digital LDOs:

• 2N/N times smaller

• 2N/N times faster

• 2N times lower power

• 22N/N better FoM

[5] L. Salem et al. “20.3 A 100nA-to-2mA successive-approximation digital LDO with PD compensation and sub-LSB duty control achieving a 15.1 ns response time at 0.5 V,” In International Solid-State Circuits Conference (ISSCC), 2017.

Tiered Accelerator Fabric

Case Study: Mapping Flexible Image
Recognition to a Tiered Accelerator Fabric

Meeting Aggressive Time Schedule

Conclusion

Celerity Overview

Conclusion
• Tiered accelerator fabric: an architectural template for embedded

workloads that enable performance gains and energy savings without
sacrificing programmability

• Celerity: a case study for accelerating low-latency, flexible image
recognition using a binarized neural network that illustrates the
potential for tiered accelerator fabrics

• Reuse, modularization, and automation enabled an academic-only
group to tape out a 16nm ASIC with 511 RISC-V cores and a
specialized binarized neural network accelerator in only 9 months

Acknowledgements

This work was funded by DARPA under the

Circuit Realization At Faster Timescales (CRAFT) program

Special thanks to Dr. Linton Salmon for program support and coordination

